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 Systems genetics is actually an old fi eld with a new name. RA Fisher [1], S Wright [2-4], 
and JBS Haldane [5, 6]—the three leading fi gures of the  modern synthesis  who brought 
genetics into alignment with evolutionary biology—are the intellectual founders of what 
we would now call systems genetics. They used other terms—population genetics, statisti-
cal genetics, and quantitative genetics. We can add one more scientifi c progenitor, CH 
Waddington, a founder of what is now called systems biology and a key fi gure who helped 
align developmental biology with genetics [7]. 

 The advantage of the term  systems genetics , and the reason for its rapid rise in promi-
nence, is that it emphasizes the concept “system” rather than the resource type ( popula-
tion ), the measurement type ( quantitative ), or the method of analysis ( statistical ). Our 
colleague Grant Morahan coined the term in 2004 to refocus attention toward sets of 
related phenotypes, sets of gene variants, and sets of environmental factors and away from 
more restricted terms that were then in use— genetical genomics ,  complex trait analysis , and 
 QTL analysis  [8–10]. A short defi nition of systems genetics and its relations to other 
approaches may help. 

 Genetics can be divided roughly into three ways of looking at relations between genetic 
and phenotypic variation:

    1.     One-to-one relations —in other words, classical Mendelian genetics—the study of qualita-
tive traits linked either to spontaneous mutations or to targeted modifi cations of genes.   

   2.     One-to-many relations  between single phenotypes and sets of loci or gene variants—in 
other words, QTL mapping, genome-wide association, and complex trait analysis.   

   3.     Many-to-many-to-many relations  among (a) sets of correlated and interacting pheno-
types at different levels (metabolites, mRNAs, protein, organelles, cells, tissues, organ 
systems, and classic phenotypes and outcome measures), (b) sets of gene variants, and 
(c) sets of environmental factors and treatments.     

 The latter is the ultimate goal of systems genetics, but the reality is that we need to be 
working on problems at all three levels concurrently. No doubt about it: the amazing com-
plexity and adaptability of biological systems needs to be dissected into manageable units 
for analytic and economic reasons. Results that make headlines and that are most highly 
rewarded tend to be the 1-to-1 simplifi cations—gene X causes aging, gene Y causes schizo-
phrenia. But what is just as obvious now is that the yin of “dissection,” “analysis,” and 
“reduction” needs its complement—the yang of “assemble,” “synthesis,” and 
“integration.” 

 The main motivation is not merely a scholastic intellectual balance—improved health 
care, agricultural productivity, and the design of robustly engineered biological systems 
absolutely require a deep understanding of the range of action of the whole. 

 The good news is that we fi nally have powerful tools both to dissect and to assemble 
biological systems with rapidly improving range, precision, and throughput. The duality of 
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genetics can be balanced. Generating millions of precisely measured genotypes and molecu-
lar phenotypes—our biological parts list—is now practical for thousands of cases, in prin-
ciple, under many conditions. Human cohorts of millions of subjects, all sequenced and 
accompanied with comprehensive health records, will soon be routine. For assembly and 
integration of these parts, we have the computer scientists, bioinformaticists, mathemati-
cians, statisticians, and public funders to thank for every faster and more sophisticated ways 
to evaluate how best to put pieces together and how to predict outcomes with some level 
of precision. We now can even look forward with angst to  ab initio  creation—making new 
biological systems from scratch. We are on the cusp of amazing capabilities. 

 The chapters in this volume will give you a hands-on appreciation of the range of activity 
and methods in systems genetics. This volume does not cover the whole range of activity; 
our contributors are drawn from a small but vibrant community of rodent experimental 
geneticists. Most of us are focused on mouse models with the goal of translational impact to 
better understand and cure human diseases. Most of us grew up in this new genomics era of 
QTL mapping, and a dominant theme of many protocols is how best to track down genetic 
causes of heritable variation across a wide range of systems and traits. But if you stand back 
and envision the whole activity represented in this volume, you will see how protocols and 
results can be snapped together to build more holistic models in a true systems spirit. We are 
now well poised to implement ever more powerful methods and models. 

 We thank our many colleagues, collaborators, and the 100 contributors to this volume. 
Both of us were frankly surprised by the highly enthusiastic responses given to our requests 
for protocols in this new area—no thumbscrews required. That is an excellent sign. And in 
keeping with the theme of systems integration, we expect that there will be strength in 
numbers and complementarity—that readers will, we hope, fi nd real synergy in using col-
lections of these protocols. 

     Braunschweig, Germany     Klaus     Schughart   
 Memphis, TN, USA     Robert     W.     Williams     
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    Chapter 1   

 Resources for Systems Genetics                     

     Robert     W.     Williams       and     Evan     G.     Williams     

  Abstract 

   A key characteristic of systems genetics is its reliance on populations that vary to a greater or lesser degree 
in genetic complexity—from highly admixed populations such as the Collaborative Cross and Diversity 
Outcross to relatively simple crosses such as sets of consomic strains and reduced complexity crosses. This 
protocol is intended to help investigators make more informed decisions about choices of resources given 
different types of questions. We consider factors such as costs, availability, and ease of breeding for com-
mon scenarios. In general, we recommend using complementary resources and minimizing depth of resa-
mpling of any given genome or strain.  

  Key words     Genetic reference population (GRP)  ,   Recombinant inbred (RI)  ,   Collaborative Cross (CC)  , 
  Congenic lines  ,   Consomic and chromosome substitution lines  ,   Recombinant congenic strains  ,   RI inter-
cross (RIX) and RI backcross (RIB) progeny  ,   Heterogeneous stock (HS)  ,   Diversity outcross (DO)  ,   Hybrid 
diversity panel (HDP)  ,   Reduced complexity cross (RCC)  ,   Gene-by-environment interactions (G × E)  

1       Introduction 

 A large number of innovative resources for systems genetics have 
been developed over the last 15 years [ 1 ]. There are at least two 
reasons for this burst of activity. The fi rst catalyst was the introduc-
tion of far easier, cheaper, and more comprehensive methods of 
genotyping [ 2 ,  3 ] that we already take for granted. State-of-the-art 
genotyping for  recombinant inbred (RI)   strains consisted of ~1600 
microsatellite markers (dinucleotide repeats) in 2001 [ 4 ]. Over the 
next 5 years this number increased to more than 10,000 SNPs [ 5 ], 
and we now rely on genotypes at more than 100,000 SNPs using 
Affymetrix or Illumina platforms [ 6 ,  7 ] at modest cost—well under 
$0.01 per marker. The second reason was rapid progress on ways 
to map quantitative traits with progressively higher precision and 
power [ 4 ,  8 – 16 ], culminating in the establishment of the Complex 
Trait Consortium in 2002 [ 17 ]. A good problem we now face is 
selecting wisely from the many options and resources that are now 
available. Any choice is a major commitment. This protocol high-
lights factors researchers should consider and balance.  
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2    Methods 

   The goal of this protocol is to step through the decisions associated 
with selecting resources for both QTL mapping and systems genet-
ics. The fi rst issue is to defi ne classes of questions. Different ques-
tions benefi t from different types and mixtures of resources—the 
cliché “different horses for different courses” applies. In  Part 2.3  
we review current murine resources used in QTL mapping and 
systems genetics. In  Part 2.4  we consider one multipurpose experi-
mental design that will work reasonably well for a range of ques-
tions. Consider this design a starting point for your discussions and 
decisions. We provide some notes on the pros and cons of the 
resources, many in a simple question-and-answer format. Since 
everyone has their own biases, ask others for their opinions. 

 These are among the main considerations or themes that go 
into the choice of resources for systems genetics:

    1.    Cost and availability (strains, hybrids, cases).   
   2.    Phenotype diversity,  heritability  , and genetic architecture.   
   3.    Marker density, mapping precision, and power.   
   4.    Sequence diversity and genetic blind spots.   
   5.    Selective phenotyping or genotyping.   
   6.    Complexity of QTL intervals.   
   7.    Population structure, admixture, and analytic methods.   
   8.    Depth of genetic, omics, and phenome data resources.   
   9.    Robustness, replicability, extensibility, and translatability.     

 To foreshadow our conclusions: Most researchers currently rely 
on a single type of resource or cross, and while there are good his-
torical reasons for this focus, this is no longer an optimal or advis-
able strategy. We now have such a range of powerful genetic 
resources optimized for different purposes that it makes sense to 
take advantage of combinations of complementary crosses and even 
multiple species [ 18 – 22 ]. Analytic methods do get more complex 
when using combinations of resources, but some of the same meth-
ods used to handle admixed human cohorts in genome- wide and 
phenome-wide association studies (GWAS and PheWAS) have now 
been adapted to handle combined experimental cohorts [ 23 – 25 ]. 

 Our other conclusion is that a mapping resolution of about 
1 Mb will usually be adequate to transition to validation, including 
translational analysis of human GWAS and PheWAS data sets [ 22 , 
 26 ,  27 ], analysis of knockout (KO) and knockin (KI) phenotypes, 
bioinformatic and omics dissection, and pharmacological interven-
tion. This is especially true in an era of super high precision but 
mechanistically unanchored GWAS. The need for high precision 
mapping in mouse has been supplanted by an acute need for 

2.1  Guidance 
on Using This Protocol

Robert W. Williams and Evan G. Williams
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powerful resources to understand and accurately predict genome-
to- phenome (G2P) relations under a wide range of environments 
and treatments.  

   We consider four main types of questions: 

   The classic forward genetic question—what are the polymorphic 
genes and sequence  variants   that modulate a phenotype or disease 
risk? This is by far the most common question our research com-
munity has dealt with over the last two decades and will probably 
remain so for the next several decades. Almost all human GWASs 
have this same simple reductionist motivation—a generalization of 
the classic Mendelian approach but applied to messier and continu-
ously variable quantitative traits. 

 The repeated mapping of large numbers of QTLs and their 
causal QT genes (QTGs) quickly leads to complex systems-level 
questions—a transition we now are beginning to see in human 
GWAS. This shift has happened gradually over the past decade. 
The pioneering work by Wakeland and colleagues on the family 
of gene  variants   that contribute to autoimmune disease is a fi ne 
example [ 28 ]. The work of Hunter and colleagues on metastasis 
networks [ 29 ,  30 ] and of Morahan and colleagues on type I dia-
betes [ 31 ] provide two other examples of this movement from 
QTL analysis to complex systems genetics. This shift is leading 
to the discovery of new biomarkers, diagnostics, mechanisms, 
and treatments. 

 Type 1 questions are usually approached in two steps: the fi rst 
involves mapping QTLs to confi dence intervals of 0.5–5 Mb, 
while the second and more problematic step involves proving to 
your own satisfaction (and that of reviewers and readers) that a 
polymorphic candidate gene has been validated as a source of 
trait variance [ 12 ,  15 ]. Almost all of the technical motivation and 
innovation in the late 1990s and early 2000s in the fi eld of QTL 
mapping addressed mapping precision, with less explicit consid-
eration given to statistical power. There was, and still is a good 
reason for this focus on precision: once the right gene has been 
identifi ed, it becomes possible to switch from genetic causality 
defi ned by loci and LOD scores, to actionable molecular mecha-
nisms modulated by differences of protein expression or sequence. 
Thanks to many human GWASs, we now understand much better 
how to control the risk of false discovery using populations that 
incorporate more and more recombinations and complex admix-
ture. One goal of this protocol is to help you get to a sweet spot 
with a balance of power and precision. A second goal is to help 
ensure that the results are robust and translatable.  

2.2  Types of 
Questions Guiding the 
Experimental 
Approach

2.2.1  Type 1 Questions

Resources for Systems Genetics
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   Questions related to G × E and treatment effects on phenotypes. 
These types of questions will be crucial to those interested in sys-
tematic manipulations of diet, environmental stressors, age, patho-
gens, drug exposure, and differences in  social interactions  . Mice 
and other inbred and isogenic model organisms are extremely well 
suited to evaluate complex experimental effects in the context of 
QTL mapping. The ability to impose well-controlled perturbations 
across large cohorts is among the strongest motivations to use 
model organisms. This kind of design is already the most common 
and critical in agricultural genetics.  

   Questions related to the global genetic modulation of single traits or 
of systems of correlated phenotypes. These types of large-scale ques-
tions often fall under the heading of “genetic architecture.” This 
term encompasses the analysis of many components of heritable and 
nonheritable variation, particularly the number and effect sizes of 
loci, independence and interactions among loci, and the roles of the 
environment,  epigenetics  , parental effects, and developmental noise 
[ 32 ]. Oddly enough, before it became easy to map QTLs, these 
types of hard questions were at the heart of quantitative genetics. In 
fact, major branches of statistics had their birth in questions of 
genetic architecture, including ANOVA and path analysis [ 33 ,  34 ]. 
The diallel cross—the production of a matrix of F1 hybrids from 
inbred strains—is one of the mainstays of this type of quantitative 
genetics [ 35 ]. Recent examples include studies by Airey et al. [ 36 ], 
Crowley et al. [ 37 ], and Percival et al. [ 38 ] who have used diallel sets 
of RI strains and the founders of the  Collaborative Cross (CC).    

   Type 4 questions are related explicitly to predicting G2P relations. 
Given summed effects of gene  variants   (Type 1 questions), G × E 
interactions (Type 2), and the architecture of all sources of vari-
ance (Type 3), can we assemble predictive models of disease risk as 
a function of age, environment, diet, and drugs? This is the core 
question and quandary of precision health delivery. Precision med-
icine will have a short grace period, but if geneticists, molecular 
biologists, statisticians, and computational scientists have not 
delivered something impressive to match the hype, this term and 
the fi eld risk being dismissed as a misnomer in the same way that 
 artifi cial intelligence  (AI) was dismissed and left unfunded for long 
periods. We need great experimental resources to generate and 
help validate predictions effi ciently. The next section provides 
quick defi nitions and commentaries on the pros and cons of the 
important resources.   

   We list of some of the major types of resources, from most simple to 
most complex in terms of level of genetic variation and complexity. 
The types of crosses and how they are generated are shown sche-
matically in Fig.  1  with numbers that correspond to subsections.

2.2.2  Type 2 Questions

2.2.3  Type 3 Questions

2.2.4  Type 4 Questions

2.3  Pros and Cons 
of Resources 
and Crosses

Robert W. Williams and Evan G. Williams
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     Single full inbred strains such as DBA/2 and C57BL/6, are often 
the starting point for in vivo studies. We usually do not think of 
inbred strains in isolation as a resource for systems genetics, but a 
family of knockouts can be bred into a single isogenic strain [ 39 ] 
or a single KO can be crossed into a hundred different inbred 
strains [ 40 ] to generate interesting cohorts. 

 Large sets of distinct inbred strains incorporate a great deal of 
genetic variation (three are shown in Fig.  1.1 ), and collectively 
may also be used as a core resource for systems genetics [ 41 ]. 
Genome sequence data are available for more than 36 inbred 
strains [ 42 ] (  www.sanger.ac.uk/science/data/mouse-genomes-
project    ) most of which are also part of the Mouse Phenome Project 
[ 43 ]. Such collections of inbred strains—often termed diversity 
panels—provide a quick and ready resource for profi ling how traits 
vary across a wide range of genomes, but there are not enough eas-
ily available strains to map QTLs effectively. Power is low and false 
discovery rates (FDRs) are high. However, sets of common inbred 
strains combined with sets of RI strains are an excellent joint 
resource for systems genetics—a combination called a hybrid diver-
sity  panel   to which we return below. 

2.3.1  Single Fully Inbred 
Strains (Fig.  1.1 )

F1

F2

Tg

Inbred

20+ gen

 RI

     RIX

     AI 

RIB

20+ gen

10+ genBackcross Conplastic

1     2   ...   M

Consomic

Outcross
DO/HS

18

Mutations

2
RCC
CIC
F2

3

Congenic

...

...

4
5

7

6

  Fig. 1    Breeding schema for different genetic resources and populations. Breeding schemes used to generate 
the resources. Short bars symbolize pairs of chromosomes. The colors (here, arbitrarily chosen as  red ,  white , 
or  black ) denote the haplotypes/genotypes of the chromosomes. The large numbers within the fi gure corre-
spond to Section 2 subheadings.  Tg —a transgenic line. Note that AI progeny are not generated from RI lines, 
but they have chromosomes with recombination patterns similar to those of RIX. For all other abbreviations see 
text of Section 23. Adapted from [ 1 ] with permission       
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 The most commonly used inbred strains have often been 
split into sets of substrains. These will carry different sets of a few 
spontaneous mutations that have been picked up over decades of 
maintenance in different colonies. In mice, C57BL/6J and 
C57BL/6N are the genetic backgrounds strains used for almost all 
KO, KI, and transgenic modifi cations (  www.mousephenotype.
org    ). Thanks to powerful sequencing technologies, sets of related 
substrains now provide an interesting new resource for G2P 
mapping. We describe this novel approach below.  

   Both RCCs and CICs are novel types of “postgenomic” inter-
crosses between very closely related substrains [ 44 ,  45 ] or even 
coisogenic pairs. For example, genomes of the C57BL/6J and 
C57BL/6N substrains differ at a total of about 36 known coding 
 variants   [ 42 ] but these substrains also differ for a surprisingly large 
numbers of phenotypes, including responses to several drugs and 
treatments [ 46 – 49 ]. BXD29/TyJ and BXD29-Tlr4<lps-2J>/J consti-
tute a coisogenic pair that differs at two or three loci [ 50 ]. How is 
it possible to map an F2 that has almost no sequence variants? 
Once two substrains have been sequenced deeply (>30-fold cover-
age), there will almost always be a large enough number of sponta-
neous noncoding mutations to assemble a sparse genome-wide 
panel of SNPs and indels for mapping sources of phenotypic 
differences. 

 While the mapping precision of an F2 RCC or CIC will be poor 
(intervals of 20 Mb or more), the small number of segregating  vari-
ants   within any interval means that it can be practical to identify 
candidate QTGs and even QT nucleotides (QTNs) effi ciently [ 51 ]. 
Kumar used this approach to defi ne a mutation in  Cyfi p2  that con-
trols response to cocaine and methamphetamine [ 44 ]. The utility of 
an RCC in mapping and even in systems genetics points out that 
the key variable in “cloning” QTLs is not mapping precision per se 
but the number of polymorphic genes and sequence variants within 
a QTL’s confi dence interval. A 5–10 Mb interval containing only a 
single sequence variant will be far more easily reduced to cause and 
mechanisms than a highly polymorphic 0.1 Mb QTL containing 
fi ve genes and hundreds of sequence variants [ 44 ,  52 ].  

   By backcrossing two inbred strains to each other while tracking 
genotypes of progeny over several generations, it is possible to 
effectively transplant whole chromosomes from donor strain  A  
into recipient strain  B . A full set of consomic strains will consist of 
22 lines, each with one swapped chromosome plus the recipient 
control strains. There are now two sets of consomic strains—
crosses of A/J or PWD/Ph into C57BL/6J [ 14 ,  53 ]. Buchner and 
Nadeau [ 54 ] have considered the pros and cons of consomic sets 
and their effi ciency relative to other resources. 

 A whole genome congenic panel is basically a fi ner-grained ver-
sion of a consomic set, but now each strain contains only a piece of 

2.3.2   Reduced 
Complexity Cross (RCC)   or 
Coisogenic Cross (CIC) 
(Fig.  1.2 )

2.3.3   Consomic   
and Congenic Whole 
Genome Panels (Fig.  1.3 )

Robert W. Williams and Evan G. Williams
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a single donor chromosome [ 55 ]. The main utility of consomic and 
congenic sets is their high power to map phenotypes to single chro-
mosomes. They have been used more recently to study epistasis and 
 epigenetic   effects [ 54 ]. Their main disadvantage is that mapping 
QTLs requires the production of a secondary F2 intercross or a set 
of interval-specifi c congenic strains. Whole chromosome effect sizes 
will almost inevitably decrease during this process [ 56 ].  

   One important factor to consider before using congenic and conso-
mic strain sets is their sensitivity to spontaneous mutations that will 
accumulate gradually and progressively on the recipient (non- 
transplanted) background chromosomes. Spontaneous mutations or 
allele conversion events that arise on these other 20 chromosomes 
can cause variant phenotypes, and these new phenotypes risk being 
misattributed to putative  variants   on the donor chromosome—
essentially off-target effects [ 57 ]. It is therefore useful—sometimes 
even essential—to verify that traits map to the introgressed chromo-
some by making a small F2 from the  consomic   or congenic stock. 
Tracking down off-target variants is diffi cult because there are no 
known polymorphisms with which to map the other chromosomes. 
Sequencing consomic strains and using RCC methods is the obvi-
ous, but costly solution. 

 This raises a broad issue that applies to all crosses that are car-
ried for many generations, including standard inbred strains, RI 
strains, AI progeny, and  HS   stock: what is the relative impact of 
inevitable de novo mutations on the measured phenotypes and 
results of different types? The good news is that for most of these 
resource types, new mutations will be unique to one strain or one 
case and will not segregate across the whole cross. Provided that the 
analysis and results are statistical collectives based on a large sample 
of strains or cases, then rare mutations, even those that are fi xed in 
single strains, will simply be lumped as another source of error vari-
ance. In contrast, in situations in which mapping and other results 
depend on a single case and control—as when using congenic and 
consomic lines—there is a risk of misattribution of effects.  

   The F2 intercross has been used widely in systems genetics, starting 
with the work of Damerval [ 58 ], Schadt, Lusis, and colleagues [ 59 , 
 60 ]. Their main advantage is the ability to make large numbers of 
progeny quickly from almost any stock (usually inbred strains). F2 
intercrosses and N2 backcrosses have a structure that makes mapping 
and the analysis of covariance among traits simple. There is no need to 
correct for population substructure ( see   Note    1  )—a problem that 
arises in almost any multi-generation cross (e.g., heterogeneous stock 
( HS  ), AIs, and RI strains). It is practical to enhance the complexity 
and utility of an F2 intercross for systems genetics and for standard 
QTL mapping by making a four-way F2—for example by crossing 
A × B F1s to C × D F1s to produce AB × CD F2 progeny. This type of 
F2 is being used in an experimental study of life span in mice [ 61 ].  

2.3.4  Off-Target 
Mutations and Isogenic 
Strains

2.3.5  F2 Intercrosses 
and Backcrosses (Fig.  1.4 )

Resources for Systems Genetics
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   AIs are simple extensions of F2s in which all subsequent generations 
are randomly bred, but with careful avoidance of sib matings [ 9 , 
 10 ]. The number of recombination events per AI case climbs 
steadily as the depth of the pedigree increases. At the eighth gen-
eration (about 2 years of breeding), 100 AI progeny, if made cor-
rectly, will provide about the same mapping precision as 500 F2 for 
Mendelian traits [ 9 ]. The countervailing problems with AIs are (1) 
the more complex logistics of using more than 100 breeders for up 
to ten generations has a high cost, (2) the variable kinship among 
AI progeny needs to be factored into any kind of mapping or other 
statistical analysis, (3) the need for a signifi cantly higher density of 
markers, and, perhaps most seriously (4) the loss of power associ-
ated with the increased number of recombinations per animal. A 
solution to some of these issues, fi rst pointed out by Darvasi and 
Soller [ 9 ], is to generate RI strains from AI stock—the so-called 
Advanced RI (ARI) strains—and both the CC and many of the 
new BXD strains are actually ARIs. 

  Trade-Offs . There are important trade-offs between mapping 
precision and mapping power—the ability to detect QTLs with 
effects that account for a defi ned percent of the trait variance 
assuming a given sample size. As pointed out by Lander and 
Botstein [ 8 ], the longer the genetic map, the higher the thresholds 
for statistical signifi cance. The relation is complex, but Table  1  pro-
vides a rough guide of tradeoffs. One column is marked  Recs/case  
or recombinations per case, and a second column is marked  LOD 
Threshold , or the linkage score that will often be needed to 
achieve genome-wide signifi cance.  Recs/case  is an index of the 
potential precision of a resource, whereas the LOD score in this 
context is an inverse index of statistical power. High  Recs/case  are 
good for precision, but high LOD score requirements are bad for 
power.

   The goal of course is precision with power. The simplest way to 
get both is to type larger and larger numbers of cases. A better solu-
tion is to combine complementary resources—one optimized for 
power such as a conventional F2 or conventional RI strains, and 
one optimized for precision—such as the  Collaborative Cross (CC)  , 
a  Hybrid Diversity Panel (HDP)  , AI,  HS  , or DO stock. The reason 
why joint resources are not used widely yet is because (1) many of 
the resources are new, and (2) the computational aspects of the 
analysis are more involved. But we now have powerful algorithms 
[ 23 – 25 ] that can handle dense genotypes and complex cohorts and 
covariates. Some of these are available online in the new version of 
 GeneNetwork  .  

   RI strains were originally made for mapping highly penetrant 
Mendelian traits [ 62 ,  63 ], but they were eventually adopted for the 
analysis of complex traits [ 64 ]. RIs are now a key resource in sys-
tems genetics. Their main advantage relative to F2s and  HS   is that 

2.3.6  Advanced 
Intercrosses (Fig.  1.6 )

2.3.7  RI Strains (Fig.  1.5 )

Robert W. Williams and Evan G. Williams
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      Table 1  
  Resources for systems genetics   

 Type of cross  Recs/case 
 LOD 
Threshold 

 $/Geno 
typing  $/Case a   Isogenic  Inbred  Phen-ome  GXE  Breeding  References 

 Consomic and 
congenic sets 

 1  1–2  0  140  Yes  Yes  Yes  Easy  Variable  [ 14 ,  55 ] 

 Reduced complexity 
cross 

 25  1–2  25  20  Almost  Almost  Hard  Hard  Easy  [ 44 ,  45 ] 

 F2 intercross, 2-way or 
4-way 

 25  2.5–3  25  15  No  No  Hard  Hard  Easy  [ 8 ,  16 ] 

 Advanced intercross  100  4–5  100  100  No  No  Hard  Hard  Hard  [ 9 ,  10 ] 

 RI strains and 
advanced RI Strains 

 50 to 80  3–4  0  140  Yes  Yes  Yes  Easy  Variable  [ 4 ,  8 ,  22 ] 

 Advanced intercross 
RI strains 

 80  4–5  0  140  Yes  Yes  Yes  Easy  Variable  [ 4 ,  8 ] 

 RI Intercross F1s 
(RIX, RIB) 

 100 to 200  4–6  0  50  Yes  No  Hard  Easy  Easy  [ 36 ,  38 ,  40 ] 

 Hybrid diversity panel 
(HDP) 

 1000  6+  0  20–150  Yes  Yes  Yes  Yes  Easy  [ 18 ,  19 ] 

 Collaborative cross 
(8-way RI) 

 135  4–6  0  195  Yes  Yes  Yes  Easy  Variable  [ 13 ,  17 ] 

 Diversity outcross 
(DO  HS  ) 

 400+  5–7  100  55  No  No  Hard  Hard  Easy  [ 84 ,  85 ] 

 Outbred stock (e.g., 
CD-1, CF-1) 

 1000  6+  100  7  No  No  Hard  Hard  Easy  [ 68 ,  79 ] 

   a Costs do not include shipping  
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each unique genometype (genetic individual) is represented by a 
stable inbred strain that can be replicated in large numbers—essen-
tially a sexually reproducing clone. RIs are therefore an excellent 
resource for studies that benefi t from replication across individuals 
(e.g., dosing and toxicity studies of genotypes) or across environ-
ments (i.e., studies on G × E), and for the gradual assembly of deep 
phenome data that can be used in G2P analysis. In mice, there are 
now suffi cient numbers of RI strains to allow for comparatively 
precise and well-powered QTL mapping. There are currently two 
major types of RI strains in mice:

    1.    Classic two-parent RI strains. There are a total of about 340 of 
these types of mouse RI strains, including ~150 BXD available 
as live stock and many other small RI families: AXB/BXA (29 
live), AKXD (20 cryopreserved), BXH (12 live), BRX58N (7 
cryopreserved), CXB (12 cryopreserved), ILSXISS (60 cryo-
preserved), LGXSM (~18), NXSM (15 cryopreserved), SWXJ 
(13 cryopreserved).   

   2.    The  Collaborative Cross (CC)  .    This is a unique eight-way RI 
set of about 100 strains that is now in widespread use for QTL 
analysis and systems genetics [ 13 ,  17 ]. These strains are avail-
able both from UNC Chapel Hill and the Jackson Laboratory.    

  Classic RI strains that are derived from standard F2 intercrosses 
harbor more recombinations per genome—about 40–50—than do 
backcrosses (10–15), or F2 intercrosses (20–30) and therefore 
deliver better QTL precision than one might expect even with 
modest samples size (Fig.  1 , note the alternating red and white 
haplotype blocks that make up the chromosomes of the RI strains). 
The ability to resample individuals also reduces the impact of non-
genetic trait variance—effectively boosting  heritability   [ 65 ]. 
Pandey and Williams [ 66 ] computed the empirical precision of   cis   -
acting expression  QTLs   ( cis -eQTLs) in the BXD family across the 
whole genome at different mean LOD scores and at different 
marker densities (their Fig. 8.6). With a cohort of 67 strains and 
using only two samples per strain, eQTLs with LOD scores of 
between 3 and 5 were located within ±2 Mb of the parent gene. 
Those with LOD scores above eight were typically within ±1 Mb. 
Corresponding empirical mapping precision based on  cis -eQTLs 
can now be easily computed for many resource types across the 
whole genome using data sets and queries built into  GeneNetwork   
([ 67 ], this volume). Examples of doing this for a large AI ( n  = 811) 
and a well matched AI-derived RI set ( n  = 40) are given in  Note    2  . 

 The CC RI strains are capable of even better mapping preci-
sion than standard RIs for two reasons. First, the recombination 
load (the crossover probability) of CC strains is 1.75 times higher 
than that of typical two-parent RI strains due in part to the 
rounds of intercrossing required to merge all eight genomes 

Robert W. Williams and Evan G. Williams
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(Table 5 of ref.  16 ). Second, the inclusion of multiple parental 
genomes within the CC means that it is possible to carry out a 
fi ne-grained haplotype contrast analysis that can effectively 
reduce QTL intervals and numbers of QTG candidates [ 68 ]. 
Haplotype contrasts of the same general type can also be 
exploited using combinations of conventional RI families, inbred 
strains, and F2 crosses [ 18 ,  25 ,  63 ,  69 ]. 

 The most important disadvantage of conventional RI strains 
and other standard two-parent crosses is that they segregate for 
only a fraction of all known polymorphisms. For example, the BXD 
family segregates for a total of ~5.2 million sequence  variants  —
about 44 % of common variants among standard inbred strains 
[ 70 ]. Some stretches of the genome will be almost completely iden-
tical by descent [ 6 ] and these regions will not normally contribute 
much to trait variance. This disadvantage however may also be 
viewed as an advantage when trying to dissect a QTL, since the load 
of polymorphisms within an interval will be about sixfold lower 
than that of the corresponding interval in the CC or DO stock, and 
thus the number of viable candidate genes may be much reduced. 
As shown by Li and colleagues, phenotypes that map into these 
genetic blindspots can be particularly easy to map to QTNs [ 52 ]. 

 A practical disadvantage of RI strains is that they often have 
poor breeding performance compared to many F2s and outbred 
 stock  . While BXD strains average 4–5 pups per litter, some are 
hard to maintain and can be sensitive to housing conditions. Many 
CC lines have even lower fecundity. This is one reason why many 
inbred strains are so much more expensive than outcross or  HS   
animals (Table  1 ) and why they are often cryopreserved rather 
than kept as live stock. This issue was also a factor motivating the 
 creation of the DO: The DO provides a way to stabilize recombi-
nations events that were at risk of extinction (Gary A. Churchill, 
personal communication). Speaking of the obvious, a fi nal disad-
vantage of RI strains is that they are inbred—an anomalous genetic 
architecture that will not only decrease fi tness but will often 
increase trait variance relative to isogenic F1 hybrids due to the 
loss of heterosis and allele buffering.  

   There are also several interesting  variants   of RI strains. The fi rst 
of these are highly recombinant RI strains generated from AI 
progeny [ 9 ]. Many of the new BXD strains (BXD43 and higher) 
are AI-derived [ 4 ,  71 ], as are all of the LGXSM strains [ 72 ]. 
Instead of directly inbreeding siblings of an F2, progeny are 
crossed to avoid sib matings for as many as 30 generations, prior 
to the inbreeding phase (another 20 generations). The main ben-
efi t of using AI stock for making RI strains is a signifi cant increase 
in potential QTL mapping precision ( see   Note    2  ), but as usual, 
with loss of power.  

2.3.8  Advanced RI Lines   

Resources for Systems Genetics
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   The second variant involves making a set of F1 intercrosses between 
RI strains and a single inbred strain—usually one that carries inter-
esting modifi er alleles with a dominant or additive effect. For exam-
ple Hunter and colleagues crossed 18 AKXD RIs to an FVB strain 
carrying a dominant cancer gene variant to map modifi ers of metas-
tasis [ 29 ]. They refer to this cross as an RI backcross (RIB) because 
the 18 sets of F1s are similar to a backcross—those chromosomes 
inherited from the RI parent are recombinant, whereas those inher-
ited from the other strain are not. This idea can also be generalized 
across multiple RI sets and inbred strains. For example, Bennett and 
colleagues crossed an APOE transgenic strain to more than 31 
common inbred strains and 66 BXD, AXB/ BXA  , BXH, CXB RI 
strains [ 40 ] to study the genetic architecture of atherosclerosis.  

   RIX panels are a clever new extension of RI strains that have some 
interesting advantages over RI strains and  HS     . Given a set of 10 RI 
strains, it is simple to cross all of them to each other: 1 × 1, 2 × 1, 
3 × 1, 3 × 2 and reciprocal crosses 1 × 2, 1 × 3, 2 × 3, and so on. From 
only 10 starting strains one can produce a full diallel set made up of 
100 isogenic sets of F1. In a full diallel we do not gain much preci-
sion by resampling the same parental haploid genome in different 
combinations (1 × 2, 1 × 3, 1 × 4, etc.). While no new recombination 
event occur in making these F1s, one does expose an interesting 
range of phenotypes, such as those exploited by Rasmussen and col-
leagues [ 73 ] to develop mouse models of Ebola infection. 

 What makes RIX particularly attractive now for both mapping 
and systems genetics is that we have several large sets of RI strains—
more than 100 BXDs and close to 100 CC lines. While it is not 
practical to generate or study a full 200 × 200 matrix of 40,000 
RIX progeny and founders, it is practical to sample all 200 of these 
RI genomes by making 100 nonoverlapping sets of RIX litters: 
1 × 2, 3 × 4, … 198 × 199, and 199 × 200. And two different RI sets 
can be crossed (e.g., BXD1 to CC001). A set of 100 disjoint (non-
overlapping) RIX progeny solves a number of problems—(1) effi -
cient sampling of large RI families that exploits all recombination 
events in the parental RIs; (2) much lower inbreeding coeffi cients 
than inbred parents; (3) genetic complexity much more like that of 
human populations; (4) ability to study parent-of-origin and domi-
nance effects; (5) fully defi ned genomes; (6) deep replication of 
any particular RIX to increase phenotype precision; (7) more direct 
analysis of G × E using precisely the same genometypes under two 
or more conditions; and as a (8) powerful resource to test predic-
tive models of G2P relations. 

 Disadvantages of RIX sets include the following: (1) they can 
be costly to generate compared to  HS   or DO stock; (2) there will 
be a loss of genetic variance associated with the heterozygosity of 
RIX progeny compared to homozygous parents [ 74 ]; (3) breeding 
and cohort logistics are somewhat more complicated and 

2.3.9  RI  Backcrosses   
(Fig.  1.7 )

2.3.10  RIX Panels 
(Fig.  1.6 )

Robert W. Williams and Evan G. Williams
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expensive; and (4) it will be diffi cult for a community of researchers 
to defi ne a single reference set of RIXs to use for collaborative phe-
notyping because there are such huge numbers of potential  RIX   
that can be made.  

   An HDP is an aggregate of RI strains and common inbred strains 
that are usually phenotyped together and used as a single joint map-
ping resource [ 19 ,  69 ,  75 ,  76 ]. They are used for at least two rea-
sons: (1) to achieve comparatively high mapping precision (intervals 
of 1–5 Mb) that can match those of  HS   and DO stock using as few 
as 100 inbred strains; (2) to make it possible to assemble large phe-
nomes that can be used for G × E analysis. A HDP does not have a 
rigid defi nition, and a mouse HDP could and should include CCs, 
BXDs, and even RIX. Depending on its membership of isogenic 
genometypes, an HDP will share some of the same problems of any 
one RI family, but to a lesser degree. For example, the issue of 
genetic blind spots will be less serious except for a few regions of the 
genome that tend to be identical-by- descent even in the CC. The 
main problem of an HDP is the generally low to moderate fecun-
dity of members and their high acquisition costs.  

   Outbred stock (OS)—often referred to as Swiss Webster stock [ 77 , 
 78 ]—are the progeny of nine albinos (two males and seven 
females) imported from a colony in Lausanne to New York in 
1926. They were subsequently distributed to researchers and 
 commercial vendors worldwide as “standard laboratory” mice. As 
expected given this history, OS do not incorporate much genetic 
variation. Genomes of 66 OS colonies studied by Yalcin and col-
leagues [ 79 ] were heterozygous at no more than 34 % of polymor-
phic loci, and a signifi cant number of colonies were almost fully 
inbred. The theoretical attraction of some OS colonies is their 
potential high mapping precision with LD blocks that are only a 
few hundred kilobases. 

  HS   and DO could be considered  variants   of OS, but here we 
use a modern defi nition of  HS   and DO as special stock generated 
from well-structured intercrosses and outcrosses among diverse 
sets of inbred progenitor strains.  HS   are almost always maintained 
using larger colonies—50 or more breeding cages—and breeding 
schemes that minimize mating of closely related individuals. One 
original motivation to make  HS   was to produce new models by 
intercrossing diverse strains, and then selectively breeding progeny 
for high and low phenotypes in responses to drugs, alcohol, and 
other treatments [ 80 ,  81 ]. The Northport  HS   ( HS  -Npt) made by 
intercrossing A/J, AKR/J, BALBc/J, CBA/J, C3H/HeJ, 
C57BL/6J, DBA/2J, and LP/J is a good example [ 82 ].  HS   have 
also been used for high precision QTL mapping [ 83 ]. 

 The DO is an example of a modern  HS   made by intercrossing 
early generations of the CC [ 84 ,  85 ]. DO mice are signifi cantly 

2.3.11  Hybrid Diversity 
 Panels   (HDP  )

2.3.12   Outbred Stock 
(OS)  , Heterogeneous Stock 
( HS  ), and Diversity 
Outcross Stock (DO  )
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more diverse even than  HS  -Npt or outbred  stock   for the simple 
reason that three of the progenitors of the DO and CC—PWK/
Ph, CAST/Ei, and WSB/Ei—are inbred strains derived from 
highly diverse wild  Mus  species and subspecies. DO cohorts are 
now at the 22nd generation (G22) of outcrossing. The DO segre-
gate for well over 40 million common sequence  variants   with 
minor allele frequencies above 10 %. These animals breed well and 
incorporate four to sixfold more genetic variants than the number 
of common variants in human populations. 

 There are two key advantages of DO and  HS  : (1) they have a 
genetic complexity that equals or exceeds that of most human pop-
ulations. They are excellent models for precision medicine; (2) like 
AI cohorts, they gradually accumulate large numbers of recombi-
nations and therefore can resolve QTLs with high precision; (3) 
the high genetic diversity among parental strains ensures that phe-
notypes will be highly variable and that most regions of the genome 
will be polymorphic; and (4) they usually have excellent breeding 
performance, a feature that reduces costs. 

 The main disadvantages of  HS   and DO stock is the inevitable 
fl ip side: the high recombination load and map expansion will 
reduce statistical power per case and the high genetic complexity 
and numbers of haplotype can make it diffi cult to resolve single 
linked QTGs and QTNs. The last and most obvious experimental 
disadvantage is that  HS   and DO animals are genetically unique. 
This means that it is more diffi cult to acquire phenomes for these 
types of resources or to use them as effectively in G × E studies.   

   In this section we consider some of the designs that can now be 
used to address the four types of questions in Subheading  2.2 . 
In the fi rst section below (2.4.1) we consider Type 1 questions 
with a focus on mapping precision. In the second section (2.5), we 
start to wrap everything together by considering a single adaptable 
design for systems genetics that will be good for discussion purposes. 
We comment on ways to modify or extend this multipurpose 
design using a Question and Answer format. Much of the text is 
summarized in Tables  1  and  2 .

     The goal is usually to get down to about 1 Mb precision as effi -
ciently as possible. Assume we are completely naive—we only know 
what traits interest us and that traits are somewhat variable among 
individual mice belonging to a few strains or stocks. We do not 
have estimates of  heritability   and we do not yet know what strains 
or crosses would be most useful. 

 One of the best resources in this situation is to study phenotypes 
in a small number of strains and F1 hybrids between these strains. 
This made sense several decades ago [ 75 ] and it makes even more 
sense today [ 86 ] because these initial “survey” data can eventually 
be wrapped into a mapping study with all other resources—whether 

2.4  A Multipurpose 
Design for Systems 
Genetics

2.4.1  Genotypes 
and Genetic Maps: What 
Mapping Resolution Is 
Needed?

Robert W. Williams and Evan G. Williams
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 HS  , DO, CC, or RIX. For example, a study of 6 individuals each 
of 18 isogenic groups, such as sets of fully inbred strains some of 
their F1s, will answer questions related to trait   heritability  , trait 
dominance, and if you are lucky, even give you hints about genetic 
complexity and architecture. It may be possible to evaluate if the 
trait or disease phenotype is controlled by a small number of QTLs 
(the oligogenic model) or by hundreds of QTLs (the polygenic or 
“infi nitesimal” model) [ 75 ]. This 120-case study will also enable 
you to perfect phenotyping and learn much more about sources of 
technical error, sex differences, and selecting better resources for 
the next stages. 

 The main risk in this type of pilot study is batch effect and 
phenotype drift. Systematically phenotyping strains  A  through  R  
at a steady pace of one genotype per week over 4 months is a poor 
experimental design, since temporal variance and drift will mas-
querade as a heritable difference among lines. Interleave the phe-
notyping to study ten different genotypes with one or two 
individuals each for the fi rst phase of the experiment and then 
repeat cycles as needed. An interleaved design may not be feasible 
in all situations, in which case consider re-phenotyping well-known 
strains throughout a study to check for drift.  

   While more mapping precision is always a good thing, there is not 
much justifi cation to refi ne maps down to much less than confi -
dence intervals of 1–2 Mb. Intervals of this size can now be effi -
ciently dissected using an impressive and diverse array of data 
resources—including of course, full genome sequence for all genes 
in all strains. A small number of candidate genes and  variants   can 

2.4.2  Mapping Precision

    Table 2  
  A design for systems genetics using mouse resources   

 Group  Types  Type notes  N  Reps  M  F  Months 

 Group 1A  8  Fully inbred strains  48  6  3  3  2.4 

 Group 1B  4  4 F1s using 8 genometypes  24  6  3  3  1.2 

 Group 1C  8  Your choice  48  6  3  3  2.4 

 Group 2A  40  CC or BXD, AXB (exploratory)  160  4  2  2  8 

 Group 2B  40  CC or BXD, AXB (selective)  160  4  2  2  8 

 Group 3A  40  RIX (semi-exploratory)  160  4  2  2  8 

 Group 3B  40  RIX (selective)  160  4  2  2  8 

 Group 4A  100  DO or  HS   (predictive)  100  NA  50  50  5 

 Group 4B  100  DO or your choice  100  NA  50  50  5 

 Sums  380  960  48 
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now often be tested effi ciently using genetically engineered mice, 
fi sh, fl ies, worms, or human GWAS data sets, in vitro analyses, or 
even phenome-wide association [ 22 ]. 

 Another reason not to obsess about precision much below 
1 Mb is the fuzzy functional defi nitions of genes. This is high-
lighted by a recent analysis of one of the strongest loci that modu-
lates  obesity   in humans—SNPs within intron 1 of the  FTO  gene. 
While the position of linkage is not in question, these SNPs appar-
ently tag  variants   in a long-range enhancer of  IRX3 —a small tran-
scription factor 0.5 Mb distal [ 87 ]. This emphasizes that functional 
validation is critical, and that the law of diminishing return can kick 
in with some force under 1 Mb. We consider a 0.5–1 Mb as a rea-
sonable goal that can usually be achieved effi ciently using a combi-
nation of resources described below. This is not quite as precise as 
what can be achieved with large GWAS, but unlikely human stud-
ies we can effi ciently transition to molecular mechanisms.  

   To develop this multipurpose design we assume almost nothing 
other than that the traits of interest are heritable and genetically 
complex, and that the initial focus is not on G × E or treatment 
effects, developmental stages and ages. We will come back to exten-
sions that these types of questions toward the end of this section. 

  Sample size and costs of stock . As our starting parameter, we 
budget for 240 individuals per year over a 4-year period—960 
cases total at a pace of 20 per month and 1 per day. This is a modest 
throughput that should be adaptable to almost any type of study, 
even electrophysiology, advanced imaging and behavioral meth-
ods. The cost of mice may range from as little as $20 per case to as 
much as $200. Standard inbred strains such as those used to gener-
ate the CC cost between $20 (C57BL/6J) and $200 per animal 
(WSB/EiJ) with an average of $102. The average price for most of 
the resources discussed in this chapter is currently about $150 per 
case. An experiment using 240 cases/year will typically require a 
budget of ~$40,000/year. Housing costs are variable, but it is safe 
to assume 25–50 cages will incur a cost of $10,000–$20,000/year. 
If cases must be genotyped (e.g., F2,  HS  , and DO stock), then fac-
tor in a charge of as much as $100 per case (Table  1 ). 

  Sex balance . Whenever possible males and females should be 
used in roughly equal numbers and concurrently. Not only is the 
use of both sexes becoming a mandate, but results will also be 
more interesting and robust in terms of their translational rele-
vance. Finally, sex differences can provide mechanistic insight. The 
inclusion of both sexes in a design does not double the required 
sample size, even when using isogenic cohorts of RIs, RIXs, or 
HDPs. A balanced sample of just one or two males and females 
across multiple genometypes can be a powerful design to detect 
sex differences. Of course, sparse sampling does not address sex 
differences within any single strain, but this is a topic that may be 
worth revisiting in a second phase of work. 

2.4.3  Assumptions
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 While it may look tidy in a Methods section, it is not necessary 
to get numbers of cases balanced precisely either by sex or geno-
type. Do not obsess about fi lling every cell in a design uniformly. If 
you must obsess about anything, make it (1) batch confounds, (2) 
drift in phenotyping standards, and (3) quality control for elec-
tronic records and case identifi ers. When possible consider whether 
litter effects are a confounding factor in phenotype variation. This 
is a particular risk for RIX designs in which one single litter may be 
used for each genotype.   

     The main purpose of phase 1 is to make sure you understand more 
about the main sources of variance of phenotypes. It is well worth 
a 3–6 month pilot to make sure the phenotyping methods and 
assays work well. The data from this initial work will eventually be 
useful for mapping. 

  Group 1A : Six individuals each of eight inbred strains. It 
would make great sense to start with the parents of the 
CC. Depending on your fi eld of study you could add or substitute 
AKR, BALB, DBA/2J, FVB, or other common strains.

  n = 48    

 Error-checking : Since assignment errors can destroy your results, 
keep track of coat color, and even better, save tails of animals for post 
hoc genetic verifi cation. This is important for all stages of the work. 
  Group 1B : Six individuals from each of four F1 hybrids made using 
strains A through H (AB, CD, EF, GH, or the reciprocals AB, BA, 
CD, DC). The parental strains for the F1s can be selected based 
either on greater genetic differences or on contrasting phenotypes.

  n = 32    

 Group 1C : Six individuals from each of eight additional types 
based on the initial results above, or to encompass other interest-
ing strains selected from the Mouse Phenome Project (phenome/
jax.org) or based on any interest you have in RCC methods. You 
could also use this set of 48 cases to resolve problems or seize 
opportunities. This set could include F1 hybrids.

  n = 48    

 Question 1 : Is six samples per type really enough? ANSWER: If 
you are not examining different environmental factors, then yes. In 
fact, you probably should not do 6 per type at any one time or from 
only 1 or 2 litters, but break work into analysis of 2–4 cases for each 
of 12 types, and generate data over several batches. You may want 
to run pairs of males and females (littermates even) in single batches, 
since you are likely to be used paired  t  tests. If you fi nd that the 
batch effects are large, then you have learned something important 
and may need to rethink the design of the larger study. If you fi nd 
that there is variation as a function of age, you have also learned 

2.5  Experimental 
Design for Systems 
Genetics

2.5.1  Stage 1: 
Heritability, Technical 
Robustness of Assays, 
Effects of Sex, and Genetic 
Architecture (Table  2 )
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something important. Furthermore, after phenotyping six per type, 
you will have a good idea if any particular phenotype needs to 
be resampled to higher Ns.  See   Note    3   that discusses some of the 
factors that should be considered when selecting number of bio-
logical replicates. 
  Question 2 : Should I use wild strains such as PWD/PhJ, CAST/
EiJ, or WSB/EiJ? ANSWER: Yes, unless there is some specifi c con-
traindication, such as cost, availability, or wildness. There is no rea-
son to not expose yourself to the remarkably wide range of 
phenotypes at this stage. (Make sure you unbox wild strains care-
fully or you will have stories to tell.) 
  Question 3 : Should I use  HS   or DO stock initially? ANSWER: 
No, not unless you have already used these types of resources or 
need them to address a specifi c hypothesis. You cannot estimate 
 heritability   from a single cohort of  HS   animals. 
  Question 4 : Should I phenotype pairs of closely related substrains? 
ANSWER: Probably not at this stage unless you already know that 
there are signifi cant differences in related phenotypes among sub-
strains. If you are interested in exploiting RCC methods then 
include pairs or trios of substrains in Group 1C. Genetic variance 
will be lower in substrain contrasts, so you will need to increase 
sample size to 8–12 per type. 
  Question 5 : Why are F1 hybrids useful? ANSWER: For at least 
these three reasons: (1) F1 hybrids are used to evaluate effects of 
gene  variants   on phenotypes in organisms with a more typical het-
erozygous genome. F1 hybrids are isogenic so they have many of 
the advantages of inbred strains. (2) F1 hybrids also enable us to 
evaluate whether phenotypes are dominant or recessive. (3) 
Reciprocal F1s can be used to study parent-of-origin effects on 
phenotypes. Note that some of these advantages do not apply to 
F1s between closely related substrains.  

   The purpose is to understand the genetic complexity of pheno-
types by low-resolution mapping but with good power. If there are 
a few QTLs with large effects then even a cross with 40 genome-
types will highlight one or two loci. Since we rely on RI strains for 
this fi rst analysis, it should be possible to compare all new data with 
all previously generated phenotypes and QTLs. We can be confi -
dent to fi nd some interesting leads, generate new hypotheses, and 
perhaps even gain mechanistic insight. 
  Group 2A : Four each of 40 RI strains. Use four each if  heritability   
is <0.4, otherwise consider using two each of 80 strains, particu-
larly if you suspect that trait variance is controlled by a major effect 
locus. You can always return to the RI strains to boost your 
samples size.

  n =160    

2.5.2  Stage 2: Low 
Resolution Mapping 
and Systems Genetics
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 Group 2B : Same as above, but using a new set of 40 RI strains. 
You will now already know if you have detected suggestive or sig-
nifi cant QTLs. If the answer is yes, then you can selectively pheno-
type those RI strains that have recombinations between the right 
haplotypes in the right regions. You might also want to replicate 
any outlier strains detected in Group 2A. If the results from Group 
2A do not yet provide compelling candidates, then just forge ahead 
with more or different RI strains.

  n =160    

 Question 6 : Could I not use RIX in Group 2B? ANSWER: Yes, 
since you will have RI strains available, this is an option. However, 
the RIX will not provide you much more genetic signal unless you 
use different RI parents to make the RIXs. RI and other fully 
homozygous strains have twice the genetic variance of F1 hybrids. 
This gives them a power advantage at early stages of mapping. 
  Question 7 : Should I use BXDs, AXBs, or the CC strains? 
ANSWER: The CC will almost always be a good choice, as they are 
likely to exhibit the highest phenotypic variance in any target phe-
notype. BXDs and AXBs will provide better mapping power  per 
case  due to their lower genetic complexity, but this benefi t can be 
neutralized by less phenotypic variance. If the parents of the RI 
panels differ markedly and your focus is more on systems genetics 
than mapping precision (e.g., C57BL/6J vs DBA/2J), then the 
BXD may be the best fi rst choice for the simple reason that so 
much data has been accumulated for these strains. Availability of 
RI strains can sometimes be the main constraint. 
  Question 8 : Can I mix CC stains with other RI panels? ANSWER: 
Yes, and this is precisely the motivation for resources such as the 
HDP. It is probably a good idea to sample at least 16 strains in any 
one RI set so that you can evaluate whether or not a locus is segre-
gating and so that you can estimate trait covariance to some degree 
among phenotypes within single RI families. 
  Question 9 : Should I use  consomic   or congenic panels for this 
work? ANSWER: No; not unless your screen in part 1 included 
PWD/Ph and A/J and suggested that these strains differed mark-
edly from C57BL/6J. These are the strains that have been used to 
make consomic sets. Consomic strains can have good power if you 
sample each of 20 strains with 6 or more cases, but to achieve map-
ping precision (±5 Mb), you will have to generate your own deriva-
tive crosses, and effect sizes of loci can evaporate during the 
production of congenics [ 56 ]. 
  Question 10 : How do I handle outlier strains in the initial QTL 
analysis? ANSWER: Transform data so that outliers do not have an 
overwhelming effect on maps and other statistical results. You can 
winsorise high and low outliers or use a logarithm transform. 
Replicate outliers if you suspect technical error.  
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    Group 3A : Four each of 40 sets of RIX progeny that are produced 
by crossing within or even across sets of RI strains. You will need 
80 RI strains to make 40 nonoverlapping RIXs. Vendors may be 
willing to do this for you if the strains are not available to you. At 
this point you will almost surely have a small set of reasonably well 
mapped loci. You will also have enough data to decide if you want 
to reevaluate your questions. Are you really after QTGs, do you 
want to test a specifi c intervention, or do you want to try your luck 
at G2P prediction using a set of molecular and genetic biomarkers? 
This fi rst set of 40 RIX progeny should enable you to do all three.

  n =160    

 Group 3B : Same as above but this set could be generated to test 
an intervention or age (using Group 3A as a control). Or this RIX 
group could be created selectively to test multilocus interactions or 
parent-of-origin effects.

  n =160    

     The combined results of the three stages should have left you with 
a set of loci mapped to less than 2 Mb. If that is not the case, then 
this fi nal stage should help achieve that goal. Ideally, you might 
want to select DO stock on the basis of genotype, and that may be 
a service that will soon be available. This would be most useful if 
only one specifi c haplotype contrast is generating trait variance 
(e.g., a 1 vs 7 split of haplotype effects). 
  Group 4A : DO or  HS  . DO stock will probably be most accessible 
and also generally most suitable.

  n =100    

 Group 4B : Your wildcard. You could continue with a second set 
of 100 DO mice if the fi rst results strengthened results. Or you 
could use the DO mice you still have to selectively cross animals 
with specifi c combinations of alleles. This would require selective 
genotyping of specifi c SNPs. DO mice are a wonderful source of 
genetic variance, but you may want to select or trim back some of 
those  variants  . This will position you well to predict phenotypes 
based on combinations of haplotypes at two or three loci. 

 Alternatively, use this group of cases for further studies on the 
effects of treatment, age or stage (see Group 3B).

  n =100    

 Question 11 : How do I genotype DO or  HS  ?  ANSWER : Even in 
the most demanding situation of mapping DO,  HS  , and wild 
caught populations, markers need only be about 100 kb apart [ 79 ], 
and since the mouse genome is about 2.5 Gb, 100,000 well chosen 

2.5.3  Stage 3: High- 
Resolution Mapping 
and More Systems 
Genetics

2.5.4  Stage 4: High- 
Resolution Mapping, 
Predictive Validation, 
and Systems Genetics
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markers will be more than adequate. Virtually any population, no 
matter how complex its genetic architecture can now be typed using 
the latest version of the mouse universal genotyping array (the 
GigaMUGA) or by sparse sequencing for about $100/case [ 88 ]. 

 For selective genotyping of a handful of markers in DO or 
RCC F2 intercrosses you can use standard protocols that will prob-
ably require acquiring sets of PCR primers. Costs may be as high 
as $1/genotype/case. If you require a few hundred markers per 
case then a good ballpark cost for custom genotyping is under 
$0.10–0.20 per genotype per case—or $20–40 for 200–2000 
markers for an F2 progeny. Finally almost all inbred, RI strains, an 
RIX progeny are already well typed and there is no cost at all. 
  Question 12 : Is there a strong justifi cation to use all of these types 
of resource—RIs, RIX and  HS  /DO? ANSWER: These resource 
types perform many of the same functions. However, G × E will be 
easier to study using RI and RIX. RIX progeny made using CC RIs 
are genetically similar to DO animals, but incorporate fewer recom-
binations per animal. Data from RIX cases can also be used to 
build up a phenome database and are potentially more useful for 
large collaborative teams, but this advantage may remain theoreti-
cal for the next several years. DO/ HS   animals are logistically far 
easier to obtain and provide you with access to the ultimate breadth 
of genetic and phenotypic diversity. They are the closest you can 
get to a wild-type mouse population short of capturing your own. 
If you results from Stages 1 to 3 are supported in DO populations, 
then you can be sure that results will have the maximum replicabil-
ity and perhaps even translatability to human populations. You may 
also be able to computationally and genetically “extract” specifi c 
disease models from RI, CC, and DO stock.    

3    Future Directions and Conclusions 

 Thanks to the massively reduced cost and increased scope of omics 
technologies, it is now feasible for small collaborative groups—and 
even single research groups—to execute large studies in systems 
genetics. We can anticipate that the use of this new systems paradigm 
will accelerate in the coming years with the advent of new and 
improved methods of quantifying an individual’s proteomes, metab-
olomes, metagenomes, and epigenomes as a function of cell type, 
tissue, age, and state. It is great to have the core animal resources 
that are needed to take advantage of this rapidly expanding set of 
omics technologies. 

 What we have not considered in this chapter is the analytic and 
synthetic tools needed for high-content systems genetics. How do 
we actually map aggregated data from 1000 cases with complex 
substructure? How do we build predictive models and test their fi t 
to empirical data? These questions are taken up in many of the 
chapters in this volume.  
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4        Notes 

     1.    What is  population substructure  and how does it make statistical 
analysis and mapping trickier? We all have learned that observa-
tions used in many statistical tests should be independent. In 
genetic crosses all F2 progeny are usually treated as independent 
observations. But what if there are strong litter effects, or batch 
confounds due to technical errors. These effects can introduce 
variance into a cross that can obscure the detection of the genu-
ine effects and produce spurious linkage. Similarly, in an AI 
cross, one mating pair may produce 50 siblings whereas another 
mating pair produces only 5. In this case we have known and 
unbalanced pedigree substructure that needs to be corrected 
even when doing something as simple as computing a correla-
tion coeffi cient. Large GWASs sometimes combine data from 
different ethnicities and it is also essential to correct statistically 
for the kinship relations among members. In some cases we can 
use the genotypes of cases to compute a matrix of kinship simi-
larity, and use this matrix to correct for the population substruc-
ture. If we know the litter and batch identifi ers we can also adjust 
for these nuisance variables in a statistical model. 

 In large RI sets such as the BXDs and CC, there is cryptic 
substructure that may not show up easily in genotypes but that 
that may still be important. The BXDs for example, were gener-
ated in multiple cohorts between 1970 and 2013 using the 
same parental strains—C57BL/6J and DBA/2J, but of course, 
43 years of breeding history will add many new  variants   to both 
parents and some of these are already well known to have 
important effects [ 89 ].   

   2.    To estimate empirical precision for QTLs across a population 
in  GeneNetwork   (  www.genenetwork.org    ) you fi rst need to 
select an expression data set from the pull-down menu. In this 
example, select  Species  =  Mouse ,  Group  =  B6D2 AI PSU , 
 Type  =  Muscle mRNA , and  Data Set  =  PSU B6D2 AI Muscle…  

 Enter this query into the  Get Any  box:

    cisLRS = (23 46 50)     

 where cisLRS is the linkage statistic specifi cally for the  cis -acting 
eQTLs. The fi rst two values in parentheses are the minimum and 
maximum LRS values to return (LRS = LOD × 4.61), and the 
fi nal number is the size in megabases of the acceptance window 
used to defi ne how close a gene must be to the QTL peak to be 
considered  cis - acting. In this case the acceptance window is very 
broad, and the peak LRS can be anywhere 50 Mb on either side 
of the gene. 
 This search will generate 2086 hits. You can resort and down-
load the results as an Excel table using the  Download Table  
button. In this large F2 intercross with more than 800 cases 
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generated by Ari Lionikas and colleagues between C57B/6J 
and DBA/2J, the mean offset between 2000  cis - eQTLs with 
LOD between 5 and 10 and their genes is 7.0 ± 0.21 Mb. 
 If you try precisely the same set of operations with a matched 
BXD Advanced RI data set ( EPFL/LISP BXD CD + HFD…
Exon Level ) you will fi nd that the mean offset between 4400 
 cis -eQTL in this data set is 2.0 ± 0.06 Mb. The latter ARI data 
set is based on ~320 cases (1 array with 4–5 pooled samples for 
each of 40 strains under two conditions—high fat and standard 
chow diet [ 21 ].   

   3.    Genetic studies usually benefi t more by increasing the  n  of 
genometypes that are phenotyped than by increasing the  n  of 
replicates per type (e.g., Fig. 1b in ref.  90 , and  see  ref.  65 ). All 
else being equal, a studying of 160 types without replication 
should be superior in terms of QTL results to one of 40 
strains and 4 replicates of each. This is obvious for Mendelian 
traits such as coat color, but it also holds true for quantitative 
traits—even those with low  heritability  . However, at an early 
stage of a study it is vital to understand heritability and tech-
nical confounds and in some cases, replication is easy and 
cheap. For this reason, it is a good idea to begin work with six 
to eight replicates of a few “reference” genomes. When using 
isogenic cases we recommend two replicates minimum, one 
per sex. Bumping this up to two per sex per strain will improve 
the comfort level of many reviewers, although to keep them 
happy you will probably need 6–8 per group. There are also 
some good reasons to study six or more cases per genome-
type even after heritability is known: such as studies of genet-
ics control of variation itself [ 91 ] or pharmacological effect 
thresholds. 

 One way to think about the diminishing returns of high 
replication rates is to compare  t  scores and  z  scores required 
to achieve statistical signifi cance for simple two-sample com-
parisons using different sample sizes. The  z  score assumes 
variance of the population is known and the critical value to 
reject the null at alpha 0.05 is  z  = 1.96. In contrast, the  t  score 
estimates variance from the sample itself, and the critical val-
ues start at a woefully high 12.71 for  n  = 2, but drops toward 
the asymptote of 1.96 very quickly: 3.182 for  n  = 4, 2.757 for 
 n  = 6, and 2.201 for  n  = 12.         
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